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Originally presented by Gabriel in [Gab72] and re-proven in [BGP73], Gabriel’s Theorem is an incredibly
powerful result connecting the study of quivers to that of finite algebras. In this small note we present the
proof, which is taken more or less from [Sch14]. The theorem is as stated below.

Theorem 1 (Gabriel). Let Q be a connected quiver.

(1) Then Q is of finite representation type if and only if the underlying Dynkin diagram, ∆Q, of Q is of
Dynkin type A, D, or E.

(2) If Q has underlying Dynkin type A, D, or E then the dimension vector induces a bijection from
isoclasses of indecomposable representations of Q to the set of positive roots:

Ψ : indQ → Φ+ Ψ : M 7→ dimM.

Prior to completeing the proof, we need to develop the tools and mechanisms which we will utilize. Recall
that a quiver Q = (Q0, Q1, s, t) is a quadruple of a set of vertices and a set of arrows between vertices (Q0

and Q1 respectively), as well as a two set mapping functions associating the source and target of an arrow.
We define a representation of a quiver by M = (Mi, φα), in which for each vertex we associate a k-vector
space and each arrow becomes a linear map. We may define the dimension vector dimM = (dimMi) to be
the n-tuple of dimensions of each vector space of a representation, where n is the number of vertices in Q.

Let Q be a quiver without orientated cycles and n the number of vertices of Q. Fix some d = (di) ∈ Zn
⩾0,

we call d the dimension vector and define the space Ed := {M | dimM = d}. It follows immediately that

Ed =
⊕
α∈Q0

Homk(k
ds(α) , kdt(α))

We now define the group

Gd :=
∏
i∈Q0

GLdi
(k).

Such a group acts on Ed via conjugation; more precisely, if g = (gi) ∈ Gd, M = (Mi, φα) ∈ Ed, and i
α−→ j

is an arrow in Q then we have that (g · φ)α = gjφαg
−1
i .

We denote the orbit of a representation M under this action by OM := {g · M | g ∈ Gd}, while our
motivation for the notion of orbits may seem unknown the following lemma illustrates the relevancy.

Lemma 2. The orbit OM is the isoclass of the representation M , that is,

OM := {M ′ ∈ repQ | M ∼= M ′}.

Proof. Suppose that M = (Mi, φα) and M ′ = (M ′
i , φ

′
α) are in the same orbit, then there exists some g ∈ Gd

such that g ·M = M ′. That is, for each arrow i
α−→ j in Q the following diagram commutes:

Mi Mj

M ′
i M ′

j

φα

gi gj

φ′
α

Therefore, g is a morphism of representations, moreover since each gi is an element of GLdi(k) we have that
it is invertible and thus an isomorphism. That is, M ∼= M ′. For the same argument, it follows immediately
that if M ∼= M ′ then there is a g ∈ Gd such that g ·M = g(M) = M ′. □
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We know introduce the notions of a quadratic form a quiver Q, for Q a quiver without orientated cycles
let q(x) be the corresponding quadratic form of Q. We define it as follows

q(x1, . . . , xn) =

n∑
i∈Q0

x2
i −

∑
α∈Q1

xs(α)xt(α)

and associate with q(x) the symmetric bilinear form

(x,y) = q(x+ y)− q(x)− q(y).

Associated with q we have the notion of roots, both positive and negative, and furthermore real and
imaginary. Let x ∈ Zn \ {0}, then x is a real root (resp. imaginary root) if q(x) = 1 (resp. q(x) = 0). It
follows that every root x of q is of the form a1e1 + · · ·+ anen, i.e. x = (a1, . . . , an), if ai ≥ 0 (resp. ai ≤ 0)
for 1 ≤ i ≤ n then x is a positive root (resp. negative root). We denote the set of all roots by Φ, the set of
all positive roots Φ+, and the set of all negative roots Φ−.

The following proposition relates the dimension of the orbit to the relevant quadratic form.

Proposition 3. Let Q be a connected quiver, M ∈ repQ, dimM = d. Then,

codimOM = dimEnd(M)− q(d) = dimExt1(M,M).

Proof. We have that dimOM = dimGd − dimAut(M), where Aut(M) is an open subgroup of End(M), so
dimAut(M) = dimEnd(M). Moreover, dimGd =

∑
i∈Q0

d2i since dimGLdi
= d2i . Thus

codimOM = dimEd − dimOM =
∑
α∈Q1

ds(α)dt(α) −
∑
i∈Q0

d2i︸ ︷︷ ︸
−q(d)

+dimEnd(M).

The second equality follows from a further result stating that q(d) = dimHom(M,M)−dimExt1(M,M). □

Corollary. If q(d) ≤ 0 then there are infinitely many isoclasses of representations of Q with dimension
vector d.

Proof. Let d be as desired and M ∈ repQ such that dimM = d. Then codimOM ≥ dimEnd(M) ≥ 1
implies the dimension of Ed is strictly greater than the dimension of any orbit OM . This then implies that
the number of orbits is infinite, and thus the statement holds. □

Equipped with these results and tools, we can now begin the proof of Gabriel’s Theorem. For our proof,
we first prove (2) and then (1).

Proof of Theorem 1 (2). To prove our statement we show that Ψ is well-defined, then that Ψ is injective,
and lastly that Ψ is surjective.

Let M be an indecomposable representation of Q, we need to show that q(dimM) = 1, of which it suffices
to show EndM ∼= k and dimExt1(M,M) = 0. We first show that EndM ∼= k, we proceed by induction on
the dimension of M . If M is a simple representation, then it follows immediately. Suppose M has dimension
strictly greater than 1, since M is indecomposable this implies that for all f ∈ EndM , f = λ1M + g where
λ ∈ k and g ∈ EndM is a nilpotent endomorphism. Since g is nilpotent, without loss of generality, we
assume that g2 = 0, moreover we choose g such that the dimension of the image of g is minimal. Then,
im g ⊂ ker g therefore there exists some indecomposable subrepresentation L such that im g ∩ L is non-zero.

Let π : ker g → L be the canonical projection and i the non-zero morphism given by the incl : im g → ker g
and π. That is,

im g ker g Lincl

i

π

This implies the composition M
g−→ im g

i−→ L
incl−−→ M is a non-zero endomorphism whose square is zero.

Then, the image is i(im g) and since g is taken to be minimal we have that dim i(img) ≥ dim im g and thus
i is injective. So the short exact sequence

0 im g L coker i 0i
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can then have the Hom(−, L) functor applied to it and gives the following surjective morphism

Ext1(L,L) Ext1(im g, L) 0

Then, by induction, dimHom(L,L) = 1, and q is positive definite thus dimExt1(L,L) = 0 so the above
equation shows that Ext1(im g, L) = 0.

Consider the commutative diagram, whose rows are exact, and the bottom row is a push out of the top
row along the morphism π.

0 ker g M im g 0

0 L X im g 0

u

π

g

j2

j1

Since Ext1(im g, L) = 0 this implies that the bottom row splits so there exists some morphism h : X → L
such that hj1 = 1L. Let ν : L → ker g be the inclusion of the direct summand, so πν = 1L. We then
construct hj2 : M → L and uν : L → M such that hj2uν = hj1πν = 1L1L = 1L and thus L is a direct
summand of M . Thus, M is indecomposable so L must be either 0 or M . However, L ̸= 0 since im g ∩ L is
non-zero and L ̸= M since L ⊂ ker g and g ̸= 0. Therefore we arrive at a contradiction and dimEnd(M) = 1,
q is positive definite, dimExt1(M,M) = 0, and q(dimM) = 1. Hence dimM is a positive root and Ψ is
well-defined.

We now show that Ψ is injective. Let M,M ′ ∈ repQ such that they are both indecomposable and
dimM = dimM ′. We know that for Dynkin types A, D, and E the indecomposable representations have no
self-extensions. Therefore, the orbits OM and OM ′ both have codimension zero, which occurs when M ∼= M ′.
This shows that Ψ is injective.

Now we show that Ψ is surjective. Let Q be of Dynkin type A, D, or E, d a positive root, M ∈ repQ such
that dimM = d and OM of maximum dimension in Ed. We need to show that M is indecomposable. Let
M = M1⊕M2, we will first show that Ext1(M1,M2) = Ext1(M2,M1) = 0. Suppose that Ext1(M1,M2) ̸= 0,
then this implies that there exists a non-split short exact sequence of the form

0 M2 E M1 0

here dimE = dimM . Then a previous result implies that dimOM < dimOE , a contradiction of the
maximality of OM . Thus, Ext1(M1,M2) = 0 and by symmetry we see that Ext1(M2,M1) = 0. Since
q(d) = dimHom(M,M)− dimExt1(M,M), we see that

1 = q(d) = dimHom(M1 ⊕M2,M1 ⊕M2) ≥ 2

and arrive at a contradiction. Thus M is indecomposable, Ψ(M) = d, and Ψ is surjective. □

We can now prove part (1).

Proof of Theorem 1 (1). Suppose Q is not of Dynkin type A, D, or E, then there exists some d ̸= 0 such that
q(d) ≤ 0, so by the Corollary there are infinitely many isoclasses of representations with dimension vector
d. Each representation is a finite direct sum of indecomposable representations, therefore the number of
isoclasses of indecomposable representations is infinite. This shows (1) and thus Gabriel’s Theorem holds. □
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